ADVANCED CATALYTIC STUDIES FOR POWER ENGINEERING AND ENVIRONMENTAL PROTECTION

Z.R. Ismagilov

Boreskov Institute of Catalysis

CONTENTS OF THE LECTURE

- Introduction
- Catalytic combustion
- Catalytic heaters
- Catalytic boilers
- Catalytic fluidized bed combustion
- Catalytic two-stage combustion
- Catalytic combustion for Gas Turbines
- Fuel Cells

CATALYSIS FOR POWER ENGINEERING AND ENVIRONMENT

KEY ROLE OF CATALYSIS

Fuel production - 100%

Fuel combustion - >0,1%

Fuel cells - 100%

Exhaust abatement - 80%

CATALYSIS FOR POWER ENGENEERING

Increase combustion efficiency

Improve environmental protection

FUEL COMBUSTION

Traditional Combustion (Chain Mechanism)

RH + O₂
$$\xrightarrow{\text{flame}}$$
 CO₂ + H₂O + Q₁ \longrightarrow CO + Benz[α]pyren

N₂ + O₂ \longrightarrow NO, NO₂ \longleftarrow thermal NO_x

RNH + O₂ \longrightarrow NO x + ... \longleftarrow fuel NO_x

Heterogeneous Catalytic Oxidation (Low Temperature Flameless Combustion)

RH + O₂
$$\xrightarrow{\text{catalyst}}$$
 CO₂ + H₂O + Q₂
N₂ + O₂ $\xrightarrow{\text{kono}}$ NO_X

RNH + O₂ $\xrightarrow{\text{kono}}$ N₂ + CO₂ + H₂O

RNH + O₂ $\xrightarrow{\text{kono}}$ NO_X + CO₂ + H₂O

Dependence of NO_x concentration on temperature at combustion of fuel containing 1 wt.% of bound nitrogen:

Advantageous Fields of Catalytic Combustion Development

- Greenhouse effect
 - energy saving industrial technologies based on catalytic combustion, to diminish CO₂ formation.
- Environmentally safe transport
 - new generation of engines on the principles of catalytic fuel combustion;
 - catalytic purification of automotive exhaust: combustion of hydrocarbons, CO, aldehydes, soot particles, etc.
- Environmental problems of energy production
 - catalytic combustion in gas turbines and boilers;
 - catalytic fluidized bed combustion;
 - two-stage catalytic combustion;
 - catalytic space heaters, household appliances.
- □ VOC Control
- □ Environmental impact of oil and gas mining, transportation

MAIN APPLICATIONS OF CATALYTIC FUEL COMBUSTION

- Catalytic gas heaters
- Boilers
- Two-stage combustion
- Gas turbines
- Fuel cells

TYPES OF CATALYTIC BURNERS

CATALYTIC GAS HEATERS

Catalyst support

- Fiber materials
- Ceramic monoliths

Active component

- Low ignition temperature
- High thermal stability

Catalytic Gas Heaters «Termokat»

CATALYTIC BURNER

Mn containing catalyst on highly porous foam material, diameter 300 mm

CATALYTIC COMBUSTION GAS BOILER

Distinctive features:

- Full combustion of natural gas;
- No nitrogen oxides in the exhaust;
- Carbon oxide concentration is below 0,01 vol. %.

Technical characteristics:

Rated heat power, kW	16
Efficiency, %	88-94
Water temperature at the output, °C	50-90
Flue gas temperature, °C, not less	110
Natural gas consumption at	
1270 Pa pressure, m ³ /hour	1.6
Dimensions, mm 890x44	0x440
Mass, kg	90

Fluidized Bed Catalytic Combustion Schematic of Catalytic Heat Generator

Scheme of Phase Transitions in Supported Copper-Chromium Catalyst

Catalytic Destruction of Mixed Organic Radioactive Wastes

- complete destruction of hazardous organic components without secondary emissions
- compacting, more than 10000 fold reduction of volume of radioactive waste for further processing by existing technologies, vitrification

PROTOTYPE DEMONSTRATION PLANT FOR MIXED ORGANIC WASTE TREATMENT AT THE PLANT OF CHEMICAL CONCENTRATES, NOVOSIBIRSK

Catalytic reactor

Catalytic fluidized bed destruction of toxic rocket fuel

Objective

Environmentally safe and efficient utilization of an extremely toxic and explosive rocket fuel 1,1-dimethylhydrazine:

unsymmetrical dimethylhydrazine, UDMH, technical name - heptyl

Method

Total catalytic oxidation of UDMH by air in a fluidized bed reactor

Schematics of a Pilot Plant for Catalytic Utilization of UDMH

Photograph of the Pilot Plant for UDMH Catalytic Fluidized Bed Destruction

CATALYTIC AIR HEATER TWO-STAGE COMBUSTION

TWO STAGE COMBUSTION

Catalytic cartridges

Two-stage catalytic heat generators has been successfully used for greenhouse heating at farm "Priobskoe" near Novosibirsk, Russia during the last three years

Catalytic gas turbines is a new approach in environmentally clean power production

The use of a catalytic burner in a gas turbine allows:

- reduction of combustion temperature
- stabilization of combustion of lean mixtures
- reduction of NO_x, CO and HC emissions

Catalytica combustion Systems, Inc.

www.energysolutionscenter.org/DistGen/AppGuide/DataFiles/Xonon.pdf

Requirements to catalysts for gas turbines

- high thermal stability (900-1000°C)
- resistance to thermal shocks
- high mechanical strength P=10 atm, velocity 40 m/s
- pressure drop less than 3%.

METAL MONOLITHIC SUPPORT

Plasma spray coating of catalyst on metal foil

Laminar (a) and turbulent (b) plasma jet outflow.

Micrograph of cross section view of Al₂O₃ plasma sprayed on metal surface

Photo of metal samples with plasma sprayed Al₂O₃

METAL MONOLITH CATALYTIC BURNER

Xonon® Catalytic Combustion System installed on Kawasaki M1A-13A

Catalyst application in fuel cell systems: development focus

Main areas of catalysis application for fuel cell technology

- Hydrogen production from natural gas and other fuels
- Catalysis of electrochemical reactions in fuel cell electrodes

Methods of syn-gas production from methane

1. Steam methane reforming

$$CH_4 + H_2O = CO + 3 H_2 - 206 kJ/mole$$

2. Dry methane reforming

$$CH_4 + CO_2 = 2 CO + 2 H_2 - 247 kJ/mole$$

3. Catalytic partial oxidation

$$CH_4 + 1/2 O_2 = CO + 2 H_2 + 36 kJ/mole$$

Schematic diagram of the process

TYPES OF CATALYTIC BURNERS

Synthesis of catalysts for combustion of HC fuels. Systematic variation of synthesis conditions

Synergetic effect of Pd and oxide manganese compounds: MnO_x, MnAl₂O₄, MnLaAl₁₁O₁₉

 $Pd/MnO_x/\gamma-Al_2O_3$ ($T_{50\%}=415$ °C) ~ $Pd/\gamma-Al_2O_3$ ($T_{50\%}=430$ °C) <

 $Pd/HA-(Mg,Mn)LaAI_{11}O_{19} (T_{50\%}=395^{\circ}C) < Pd/HA \ precursor-(Mn,Mg)LaAI_{11}O_{19} (T_{50\%}=350^{\circ}C) < Pd/HA \ pr$

Catalytic burners for reformers of fuel cell energy installations

Two types of catalysts